

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Northwest Fisheries Science Center 2725 Montlake Boulevard East SEATTLE, WASHINGTON 98112-2097

MEMORANDUM

Date: May 11, 2005

From: Michelle McClure, Tom Cooney and the Interior Columbia Technical Recovery Team

To: NMFS NW Regional Office, Co-managers and other interested parties

Subject: Updated population delineation in the interior Columbia Basin

Introduction

The Interior Columbia Technical Recovery Team released its draft document, delineating extant populations of listed ESUs of salmon and steelhead with in the Interior Columbia Basin in July 2003 (IC-TRT 2003). This memo provides an update of changes to that population structure. We release this update for use in the local recovery planning process. A complete technical document that includes details of supporting analyses is anticipated to be released in the late summer or early fall of 2005. The early release of this memo will allow recovery planners to incorporate these changes to population structure appropriately in their recovery plans. We include here a brief description of general changes to our population delineation that span ESUs, descriptions of particular changes to populations within each ESU, and a list of all populations with supporting statistics. This update memorandum, as well as supporting maps in both PDF and GIS-compatible format can be downloaded at

<u>http://www.nwfsc.noaa.gov/trt/trt_columbia.htm</u>. If other maps are needed, please contact Michelle McClure (michelle.mcclure@noaa.gov).

General Changes and Considerations for all ESUs

The vast majority of changes that will be included in our final population identification document are changes that provide clarity and consistency, rather than changes to the definition of extant populations. For example, we will include standardized genetic analyses across all ESUs, rather than relying on previously conducted analyses as we did for some ESUs in our first draft. We will also include a more thorough discussion of recent advances in our understanding of the interaction between resident and anadromous fish in *O. mykiss* populations, and general considerations for including both life history types in a single population. Recent work in several geographic regions indicates that there can be substantial interbreeding between sympatric anadromous and resident *O. mykiss* (Pearsons et al. 1998, Ruzycki et al. 2003). (There are also indications that one life history form can give rise to the other, although the ultimate success of the offspring may vary (Ruzycki et al. 2003, Thrower et al. 2004)). This suggests that generally

resident fish should be included in the TRT-delineated populations of *O. mykiss*, unless local information indicates they should be regarded separately. [Note that general considerations for treating resident and anadromous forms with respect to viability have recently been released by the Independent Science Advisory Board (ISAB 2005).]

In this memorandum, we detail several specific changes to our population delineation effort. The most significant change we have made is to focus more clearly on historical population definition, and to develop likely population boundaries in areas that were historically occupied, but that are no longer occupied. We used an analysis of the likely intrinsic potential of stream segments throughout historically accessible areas. Our delineation of historical populations is intended to provide a general hypothesis of likely historical ESU structure rather than precise designations of population boundaries. The second change we have made across ESUs is to slightly modify the lower reaches of some populations to reflect better our understanding of salmon and steelhead use of these areas and to apply consistently our "rule of thumb" that includes areas not capable of supporting an independent population with the nearest upstream population.

Finally, we continue to use the term "Major Population Group" or MPG to refer to groups of populations that are geographically and genetically cohesive. These MPGs are a level of organization between demographically-independent populations and ESUs. The Willamette/Lower Columbia TRT defines similar subunits that they refer to as "strata;" however, their strata include consideration of life history as well as geography, and do not include detected genetic similarity. Because of this differences in definition and consequent differences in viability criteria at above-population levels, we do not use the same terms. However, in each case these subunits within an ESU serve as a mechanism to describe ESU-level spatial structure and diversity.

Specific changes are detailed below. Steelhead populations are shown in figures 1 and 2. Stream-type chinook populations are shown in figures 3 and 4. Ocean-type chinook populations are shown in figure 5 and sockeye populations are shown in figure 6. Steelhead and chinook populations, their MPG and ESU designations and size statistics are shown in Tables 1 and 2; sockeye populations and associated statistics are shown in Table 3.

I. Steelhead trout (Oncorhynchus mykiss)

Mid-Columbia Steelhead

Within the Mid-Columbia Steelhead ESU, we have made the following changes:

- **Deschutes River – Eastside and Deschutes River –Westside populations.** We designated two populations in the Deschutes River drainage: one occupying the eastside tributaries and the other occupying the west-side tributaries. However, we did not in our original document consider areas above Pelton and Round Butte dams that were historically used (or likely used) by anadromous *O. mykiss.* These

populations now include areas that historically supported steelhead but are currently rendered inaccessible by these dams. The Deschutes-Eastside population now includes Willow Creek and its tributaries; the Deschutes-Westside population now includes Squaw Creek and any historically used portions of the Metolius River.

- Willow Creek. Willow Creek (tributary to the Columbia, upstream of the John Day River) was not designated in any way in our original document. Anecdotal information, our analysis of intrinsic potential and a qualitative comparison of habitat likely available historically in this drainage with currently occupied habitat suggest that this area likely supported anadromous *O. mykiss*, and had sufficient habitat quantity to support an independent population. Willow Creek is now designated as an independent population; we include it in the Walla Walla/Umatilla MPG based on a consideration of distance, ecoregion and habitat attributes (temperature, precipitation and elevation).
- Satus and Toppenish Creeks. In our original draft, we designated Satus and Toppenish Creeks as a single population with significant substructure. This designation was made on the basis of two lines of evidence. First, while genetically differentiated, much of the difference between allozyme samples from the two locations was due to fixation at several loci in the Toppenish samples. This pattern is consistent with a bottleneck in a portion of the population (such a bottleneck is supported by demographic information). Thus, the observed genetic differentiation could be the result of isolation between the two regions or be an artifact of low returns to Toppenish Creek in the 1980s. Second, we understood that the lower reaches of the two creeks were likely connected in anastomosing channels that could have supported spawning. We received multiple comments about this designation, and have since learned that the lower reaches of these two creeks, while likely anastomosing, cut through fine sediments deposited by the Missoula floods (Norman et al. 2004), making them unsuitable for spawning. This separates areas of likely spawning in the two tributaries by over 90 km. Thus, we now designate two populations: Satus Creek and Toppenish Creek.
- **Historically occupied but currently inaccessible populations.** On the basis of our analysis of intrinsic potential, landscape characteristics including basin size and historical accounts, we designated one additional, extirpated or historical population of *O. mykiss* in the Crooked River.

Snake River Steelhead

We made few changes to the Snake River steelhead ESU, except those related to population identification in historically accessible areas.

- Hells Canyon tributaries. In our 2003 document, we identified steelheadsupporting tributaries to Hells Canyon as an unaffiliated population likely dependent historically on upstream populations. We have now linked these small tributaries to likely spawning concentrations in Wildhorse Creek and Powder River. The Hells Canyon tributary region is now designated as a component of the Wildhorse-Powder population, and belongs to the Hells Canyon MPG. Remaining populations in the Hells Canyon MPG have been extirpated.

- Historically occupied but currently inaccessible populations. We have designated 15 populations in four MPGs in areas currently blocked by the Hells Canyon dam complex and other upstream dams. These populations are listed in Table 2 and shown in Figure 2. We considered the possibility that some of these upstream populations might have historically belonged to a different ESU, but found that geographic (distance), historical accounts of migration and spawn timing and habitat (ecoregional) information did not provide any congruent picture of potential ESU delineations. We did find substantial differences between the upper-most and lower-most areas in the basin, but no clear division between these regions. We will discuss this possibility more thoroughly in our final draft.

Upper Columbia steelhead

Population structure within the Upper Columbia steelhead ESU has been modified as follows:

- _ Crab Creek. We did not consider the Crab Creek drainage in our 2003 report. Crab Creek currently has relatively abundant resident O. mykiss at higher elevations, and anadromous O. mykiss of uncertain origin in an irrigation wasteway. Historically, this drainage appears to have had sufficient habitat quantity to support an independent population and is sufficiently isolated from other populations to suggest that demographic interactions were minimal. However, even historically, this drainage was likely ephemeral, restricting anadromous access to particular times of year or even to particular years. A series of small tributaries to the Columbia in which steelhead are currently present extend from Crab Creek to the Wenatchee; few such tributaries exist between Crab Creek and the Yakima. Crab Creek is guite different with respect to ecoregion from other populations in the Upper Columbia or Mid-Columbia ESUs. We consider Crab Creek an independent population of the Wenatchee-Methow MPG within the Upper Columbia steelhead ESU. We recognize that the resident component of this population is likely more dominant and critical to the long-term persistence of this population.
- Historically occupied but currently inaccessible populations. We have designated six populations in two additional MPGs in areas historically occupied, but now blocked by Chief Joseph and Grand Coulee dams. Historical accounts describing occupancy of the Pend Oreille River are conflicting; we are undertaking further investigation to assess the possibility that upstream areas in the Pend Oreille might have been included in an historical population.

II. Chinook salmon (Oncorhynchus tshawytscha)

Snake River spring/summer chinook.

We made few changes to the Snake River spring/summer chinook ESU, except those related to population identification in historically accessible areas and MPG designation.

- **MPG designation**. We designated Chamberlain Creek and the Little Salmon River populations as unaffiliated areas in our 2003 draft. We have now included them in MPGs on the basis of geographic proximity. <u>Chamberlain Creek falls</u> within the Middle Fork Salmon MPG; and the Little Salmon River falls within the South Fork Salmon MPG.
- Clearwater River. <u>We identified eleven likely historical populations in two</u> <u>MPGs in the Clearwater River.</u> The Clearwater basin was blocked to chinook passage by the Lewiston Dam in the 1920s. Fish currently in this basin have been re-stocked from Rapid River and other hatchery stocks not considered at the time of listing to be part of the ESU.
- Historically occupied but currently inaccessible populations. We identified five MPGs with a total of 25 populations in the areas currently blocked by the Hells Canyon dam complex and other upstream dams. We considered the possibility that some of these upstream populations might have historically belonged to a different ESU, but found that geographic (distance), historical accounts of migration and spawn timing and habitat (ecoregional) information did not provide any congruent picture of potential ESU delineations. We did find substantial differences between the upper-most and lower-most areas in the basin, but no clear division between these regions. We will discuss this possibility more thoroughly in our final draft.

Upper Columbia spring chinook

We have made the following changes to the Upper Columbia chinook ESU:

- Okanogan River. In our 2003 draft, we included ambiguous language about the status of Okanogan River chinook. <u>We now designate the Okanogan as an historical population of the Upper Columbia spring chinook ESU</u>. While the quantity of habitat available for stream-type chinook in this tributary was likely small, it does fall within the range of previously designated populations. In addition, spawning areas in this tributary are sufficiently well-separated from other potential spawning reaches to suggest that demographic exchange between this tributary and other areas was likely minimal. This population is regarded as extirpated. Chinook salmon have been historically documented above Lake Osoyoos. If these were stream-type spring chinook, it is possible that there was an additional population in the Okanogan River. Available information does not allow us to make this determination.

- Historically occupied but currently inaccessible populations. We have designated six populations in two MPGs in areas historically occupied, but now blocked by Chief Joseph and Grand Coulee dams.

Snake River fall chinook

We now designate three historical populations of ocean-type, fall chinook in the Snake <u>River basin</u>. Lack of robust historical distribution data made these population designations particularly challenging. We relied on historical accounts and qualitative assessments of river morphology to delineate populations.

- Lower Snake River mainstem. This population is currently extant, and extends from Hells Canyon to the confluence of the Snake and Columbia Rivers, including the lower reaches of tributaries to the Snake River. While this area is currently being utilized by Snake River fall chinook, it is not highlighted as an area of high production in historical accounts. We consider it likely that this population was historically substantially smaller than other populations in the ESU.
- **Marsing Reach**. This population extends from Swan Falls to Hells Canyon. Hells Canyon was noted as an area of lesser quality for fall chinook and serves as the break between this population and the Lower Snake population. The Marsing Reach is noted as an area of particularly high production historically.
- Salmon Falls. This population extends from Swan Falls to Shoshone Falls. The area below American Falls has been noted as an area of high production historically. Shoshone Falls was an impassable barrier to anadromous fishes, and thus is the upper boundary of this population. There is an area of less suitable habitat above Swan Falls that serves as a break between this population and the Marsing Reach population.

III. Sockeye salmon (Oncorhynchus nerka)

Snake River sockeye

As with other ESUs, we considered more thoroughly the likely historical population structure of Snake River sockeye.

Populations within the Stanley Lakes basin. In our 2003 document, we designated a single population (Redfish Lake) based on current distribution. However, historically within the Stanley Lakes basin, at least five lakes contained anadromous sockeye. In addition, two more lakes – Little Redfish and Hell Roaring Lakes -- currently contain resident kokanee. (Mullan 1986) believes this to indicate that sockeye once used these areas as well; however, both these lakes are very small and may not have been large enough to support an independent population. We designate at least three historical populations within the Stanley Lakes Basin: Redfish Lake (including Little Redfish), Alturas Lake, and Stanley Lake. The Redfish Lake sockeye population includes both anadromous sockeye

and residualized sockeye that spawn synchronously with the anadromous fish. In addition, two more lakes -- Pettit Lake and Yellowbelly Lake -- may have supported independent populations. However, currently available information does not allow us to determine with certainty their likely status. We therefore regard them as potential populations. We are undertaking further investigation to assess the likelihood that these two lakes might have supported additional independent populations and will discuss this more thoroughly in our final document. All these lakes would fall within the Snake River sockeye ESU.

 Populations outside the Stanley Lakes basin. In addition, three other lakes or groups of lakes in the Snake River drainage supported sockeye populations: Warm Lake (one lake in the South Fork Salmon drainage); Payette, Upper Payette and Little Payette Lakes (Payette River drainage); and Wallowa Lake (Grande Ronde drainage). The distance between these lakes or groups of lakes is consistent with observed distances between extant ESUs of lake-spawning sockeye, suggesting that each of these groups would likely have been separate MPGs and may have been separate ESUs.

Literature Cited

- IC-TRT. 2003. Independent populations of chinook, steelhead and sockeye for listed evolutionarily significant units (ESUs) within the interior Columbia basin. *in*.
- ISAB. 2005. Viability of ESUs containing multiple types of populations. ISAB 2005-2, Independent Science Advisory Board, Northwest Power and Conservation Council, Portland, OR.
- Mullan, J. W. 1986. Determinants of sockeye salmon abundance in the Columbia River, 1880's-1982: a review and synthesis. U.S. Fish and Wildlife Service Biological Report 86:135 p.
- Norman, D. K., A. J. Busacca, and R. Teissere. 2004. Geology of the Yakima Valley wine country -- a geologic field trip guide from Stevenson to Zillah, Washington. Field Trip Guide 1, Washington Department of Natural Resources, Division of Geology and Earth Resources, Olympia, Washington.
- Pearsons, T. N., G. A. McMichael, K. D. Ham, E. L. Bartrand, A. L. Fritts, and C. W. Hopley. 1998. Washington Department of Fish and Wildlife, Yakima River species interactions studies, progress report 1995-1997. Contract No. 1996BI64878, Project No. 199506402 BPA Report DOE/BP-64878-6, Bonneville Power Administration.
- Ruzycki, J. R., M.W.Flesher, R.W.Carmichael, and D. L. Eddy. 2003. Lower Snake River Compensation Plan: Oregon Evaluation Studies-Steelhead Life History, Genetics, and Kelt Reconditioning. Oregon Department of Fish and Wildlife, La Grande OR.
- Thrower, F. P., J. J. Hard, and J. E. Joyce. 2004. Genetic architecture of grown and early life history transitions in anadromous and freshwater-derived populations of steelhead. Journal of Fish Biology **65**:286-307.

Table 1. Steelhead (O. mykiss) populations, MPG and ESU designations and size statistics within the interior Columbia basin.

				Stream kilometers	
ID	Population Name	Label	Basin Area (1000 acres/1000 km2)	Wtd. Km	Total
IC Steelhead ESU					
MPG:	Cascade Eastern Slope Tributaries		7101 (28.7)	3490.3	164
1	White Salmon River	MCWSA-s	338 (1.4)	193.9	5
2	Klickitat River	MCKLI-s	885 (3.6)	677.2	25
3	Fifteen Mile Creek	MCFIF-s	351 (1.4)	353.3	12
4	Deschutes West	DRWST-s	1497(6.1)	781.6	39
5	Deschutes East	DREST-s	961 (3.9)	440.1	26
6	Crooked River	DRCRO-s	2924 (11.8)	1044.2	50
12	Rock Creek	MCROC-s	145 (0.6)	95.5	4
MPG·	John Day River		5134 (20.8)	3090.5	150
7	John Day River lower mainstem tribs	JDLMT-s	2436 (9.9)	1295.7	68
8	North Fork John Day River	JDNFJ-s	1183 (4.8)	907.8	36
9	Middle Fork John Day River	JDMFJ-s	507 (2.1)	366.5	15
10	South Fork John Day River	JDSFJ-s	388 (1.6)	113.4	11
11	John Day upper mainstem	JDUMA-s	621 (2.5)	407.1	17
	Walla Walla and Umatilla Rivers		4568 (18.5)	2441.6	107.
13	Willow Creek	MCWIL-s	762 (3.1)	400.5	20
14	Umatilla River	MCUMA-s	2584 (10.5)	1152.4	51
15	Walla Walla River	WWMAI-s	738 (3.0)	545.8	21
16	Touchet River	WWTOU-s	484 (2.0)	342.9	14
MPG:	Yakima River Group		3765 (15.2)	2150.2	100-
17	Satus Creek	YRSAT-s	1047 (4.2)	395.6	25
	Toppenish Creek	YRTOP-s	381 (1.5)	205.9	8
18	Naches River	YRNAC-s	967 (3.9)	602.1	27
19	Yakima River upper mainstem	YRUMA-s	1369 (5.5)	946.6	39
2. Snake River Stee	lhead				
				Stream kilome	
ID	Population Name	Label	Basin Area (1000 acres/1000 km2)	Wtd. Km	Total
R Steelhead ESU					
	Lower Snake		1415 (5.7)	753.8	47
1	Tucannon River	SNTUC-s	598 (2.4)	306.5	19
2	Asotin Creek	SNASO-s	817 (3.3)	447.3	27
				(000.4	76
	Grande Bonde Biver		2781 /11 21		
	Grande Ronde River		2781 (11.3)	1992.4	76 22
3	Grande Ronde lower mainstem	GRLMT-s	771 (3.1)	423.8	22
3 4	Grande Ronde lower mainstem Joseph Creek	GRJOS-s	771 (3.1) 353 (1.4)	423.8 253.4	22 9
3	Grande Ronde lower mainstem Joseph Creek Wallowa River		771 (3.1)	423.8	22 9 14
3 4 5 6	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem	GRJOS-s GRWAL-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2)	423.8 253.4 368.6 946.6	22 9 14 30
3 4 5 6 <i>MPG</i> :	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem Clearwater River	GRJOS-s GRWAL-s GRUMA-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2) 6007 (24.3)	423.8 253.4 368.6 946.6 3118.9	22 9 14 30 110
3 4 5 6 <u>MPG:</u> 7	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem Clearwater River Clearwater lower mainstem	GRJOS-s GRWAL-s GRUMA-s CRLMA-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2) 6007 (24.3) 1692 (6.8)	423.8 253.4 368.6 946.6 3118.9 742.9	22 9 14 30 110 24
3 4 5 6 <i>MPG</i> : 7 8	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem Clearwater River Clearwater lower mainstem North Fork Clearwater	GRJOS-s GRWAL-s GRUMA-s CRLMA-s CRNFC-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2) 6007 (24.3) 1692 (6.8) 1560 (6.3)	423.8 253.4 368.6 946.6 3118.9 742.9 1017.9	22 9 14 30 110 24 31
3 4 5 6 <u>MPG:</u> 7 8 9	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem Clearwater River Clearwater lower mainstem North Fork Clearwater Lolo Creek	GRJOS-s GRWAL-s GRUMA-s CRLMA-s CRNFC-s CRLOL-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2) 6007 (24.3) 1692 (6.8) 1560 (6.3) 155 (0.6)	423.8 253.4 368.6 946.6 3118.9 742.9 1017.9 122.4	22 9 14 30 110 24 31 3
3 4 5 6 <i>MPG</i> : 7 8	Grande Ronde lower mainstem Joseph Creek Wallowa River Grand Ronde upper mainstem Clearwater River Clearwater lower mainstem North Fork Clearwater	GRJOS-s GRWAL-s GRUMA-s CRLMA-s CRNFC-s	771 (3.1) 353 (1.4) 610 (2.5) 1047 (4.2) 6007 (24.3) 1692 (6.8) 1560 (6.3)	423.8 253.4 368.6 946.6 3118.9 742.9 1017.9	22 9 14 30 110 24 31

			Basin Area (1000	Stream kilometers		
ID	Population Name	Label	acres/1000 km2)	Wtd. Km	Total	
MPG	Salmon River		9043 (36.6)	3744.7	15166	
13	Little Salmon and Rapid Rivers	SRLSR-s	1071 (4.3)	267.7	2215	
13	Chamberlain Creek	SRCHA-s	1007 (4.1)	280.8	1900	
14	South Fork Salmon River	SFMAI-s	680 (2.8)	280.0	1283	
15	South Fork Sainon River	SFSEC-s	159 (0.6)	122.5	334	
10	Panther Creek	SRPAN-s	636 (2.6)	240.5	1059	
17	Big, Camas, and Loon Creeks	MFBIG-s	1108 (4.5)	481.2	1941	
10	Middle Fk Salmon River Upper	IVIEDIG-S	1106 (4.5)	401.2	1941	
19	Mainstem	MFUMA-s	732 (3.0)	499.6	1476	
20	North Fork Salmon River	SRNFS-s	309 (1.3)	112.7	533	
21	Lemhi River	SRLEM-s	942 (3.8)	413.0	1194	
22	Pahsimeroi River	SRPAH-s	848 (3.4)	281.8	930	
23	East Fork Salmon River	SREFS-s	815 (3.3)	299.8	946	
24	Salmon River upper mainstem	SRUMA-s	736 (3.0)	456.0	1354	
MPG	Imnaha River		545 (2.2)	377.5	1524	
25	Imnaha River	*IRMAI-s	545 (2.2)	377.5	1524	
			0.0(1.1)	0.110		
MPG:	Hells Canyon		6746 (16.4)	2996.6	11434	
26	Hells Canyon	SNHCT-s	771 (3.1)	410.5	2317	
27	Powder River	USPOW-s	1164 (4.7)	984.8	3799	
28	Burnt River	USBUR-s	850 (3.4)	620.5	2959	
29	Weiser River	USWEI-s	1269 (5.1)	980.8	2359	
		COMERC	1200 (0.1)	000.0	2000	
MPG	Payette/Boise		4630 (18.7)	2968.3	9924	
30	Lower Payette	PRLMT-s	670 (2.7)	424.5	1142	
31	North Fork Payette	PRUMA-s	753 (3.0)	498.3	1383	
32	South Fork Payette	PRSFP-s	762 (3.1)	707.9	1717	
35	Boise River	USBOI-s	2692 (16.0)	1337.7	5682	
	Malheur/Owyhee		10123 (41)	3812.5	32737	
33	Lower Malheur	MRLMT-s	1498 (6.1)	503.9	5384	
34	Upper Malheur	MRUMA-s	1554 (6.3)	1052.7	4959	
36	Lower Owyhee River	ORLMT-s	3406 (13.8)	1032	12321	
37	Upper Owyhee River	ORUMA-s	3665 (14.8)	1223.9	10073	
			700 ((00 0)	0.75.5	44070	
	Bruneau and Salmon Falls		7624 (30.9)	2475.5	11279	
38	Bruneau River	USBRU-s	3668 (14.8)	1150.7	7353	
39	Canyon Creek	USCAN-s	935 (3.8)	332.3	976	
40	Salmon Falls/Rock Cr	USSAF-s	3021 (12.2)	992.5	2950	
3. Upper Columbia Steelhead						
ID Population Name		Label	Basin Area (1000 acres/1000 km2)	Stream kilor Wtd. Km	meters Total	
UC Steelhead ESU						
	Wenatchee-Methow		9980 (40.4)	2985.1	16635	
1	Crab Creek	UCCRC-s	3337 (13.5)	586.5	4158	
2	Wenatchee	UCWEN-s	1991 (8.1)	600.8	3994	
3	Entiat	UCENT-s	328 (1.3)	126.9	1037	
4	Methow	UCMET-s	1220 (4.9)	415.2	3568	
5		UCOKA-s	3104 (12.6)	1255.7	8036	

		Label	Basin Area (1000 acres/1000 km2)	Stream kilometers	
ID	Population Name			Wtd. Km	Total
MPG:	Kettle/Colville River		5428 (22)	2053.2	13463
6	Sanpoil River	ACSAN-s	1512 (6.1)	407.7	2868
9	Kettle/Colville River	ACKET-s	1100 (4.5)	628.7	2653
10	Pend Oreille	ACPEN-s	732 (3.0)	120.4	2123
11	Kootenay River	ACKOO-s	2083 (8.4)	896.4	5819
MPG:	Spokane River		1698 (6.9)	926.3	4469
7	Spokane River	SPMAI-s	1256 (5.1)	681.3	3219
8	Hangman Creek	SPHAN-s	443 (1.9)	245.0	1249

Table 2. Chinook salmon (*O. tshawytscha*) populations, MPG and ESU designations and size statistics within the interior Columbia basin.

I. Shake River S	pring-Summer Chinook				
				Stream kild	meters
ID	Population Name	Label	Basin Area (1000 acres/1000 km2)	Wtd. Km	Total
RSS ESU					
MPG:	Lower Snake		531 (2.1)	128.1	182
1	Tucannon River	SNTUC	322 (1.3)	103.5	107
2	Asotin Creek	SNASO	209 (0.8)	24.6	74
MPG:	Grande Ronde/Imnaha Rivers		2198 (8.9)	713.4	598
3	Wenaha River	GRWEN	189 (0.8)	55.9	54
4	Lostine River	GRLOS	458 (1.9)	148.8	103
5		GRMIN	153 (0.6)	64.2	39
6		GRCAT	313 (1.3)	133.3	68
7	Grande Ronde River upper mainstem	GRUMA	480 (1.9)	168.2	165
8	Imnaha River mainstem	IRMAI	326 (1.3)	84.3	93
9	4	IRBSH	219 (0.9)	42.6	59
10	3 · · · · · · ·	GRLOO	61 (0.2)	16.0	14
MDC	S. El: Solmon Divor		0011 (8.1)	041.7	
_	S Fk Salmon River		2011 (8.1)	241.7	387
11	Little Salmon River	SRLSR	674 (2.7)	47.0	135
12	South Fork Salmon River mainstem	SFMAI	909 (3.7)	99.6	171
13		SFSEC	159 (0.6)	58.0	33
14	East Fork South Fork Salmon River	SFEFS	270 (1.1)	37.0	47
MPG:	Middle Fk Salmon River		2591 (10.5)	443.1	485
15	Chamberlain Creek	SRCHA	521 (2.1)	65.6	101
	Middle Fork Salmon River below Indian				
16		MFLMA	556 (2.2)	54.9	102
17	Big Creek	MFBIG	381 (1.5)	69.0	71
18		MFCAM	255 (1.0)	26.8	40
19		MFLOO	227 (0.9)	24.3	40
20	Middle Fork Salmon River above Indian Creek	MFUMA	402 (1.6)	83.6	80
21	Sulphur Creek	MFSUL	33 (0.1)	13.7	6
22	Bear Valley Creek	MFBEA	123 (0.5)	64.9	22
23	Marsh Creek	MFMAR	94 (0.4)	40.3	20
MPG:	Upper Salmon River		4056 (16.4)	731.8	559
24	North Fork Salmon River	SRNFS	309 (1.3)	34.8	53
25	Lemhi River	SRLEM	942 (3.8)	174.8	119
26	Salmon River lower mainstem below Redfish Lake	SRLMA	1078 (4.4)	131.9	152
27	Pahsimeroi River	SRPAH	532 (2.2)	125.6	47
28		SREFS	352 (1.4)	50.1	44
29		SRYFS	122 (0.5)	31.8	2
30		SRVAL	93 (0.4)	47.5	20
31	Salmon River upper mainstem above Redfish Lake	SRUMA	223 (0.9)	97.9	3
31		SRPAN	406 (1.6)	37.5	63

	Derulation North			Stream kilometers	
ID	Population Name	Label	Basin Area (1000 acres/1000 km2)	Wtd. Km	Total
			4005 (0.0)	0.40.0	0007
	Dry Clearwater (lower)		1965 (8.0)	346.6	3267
33		CRLAP	528 (2.1)	89.0	661
34	1	CRPOT	381 (1.5)	94.6	641
38	· · · · · · · · · · · · · · · · · · ·	SCLAW	481 (1.9)	53.0	594
39	Upper S. Fork Clearwater	SCUMA	574 (2.3)	110.0	1371
MPG	Wet Clearwater (upper)		4042 (16.4)	815.8	7743
35		NCLMA	624 (2.5)	154.3	1211
36		NCUMA	940 (3.8)	239.5	1957
37		CRLOL	381 (1.5)	94.1	760
40		CRLOC	810 (3.3)	147.9	1476
41		SEMEA	294 (1.2)	37.9	554
42		SEMOO	363 (1.5)	51.2	644
43		SEUMA	630 (2.5)	90.9	1141
40		SLOWA	030 (2.3)	30.3	1141
MPG:	Middle Snake (Pine to Weiser)		3180 (12.9)	650.5	8753
44	Pine Creek	USPIN	194 (0.8)	35.2	522
45	Wildhorse Creek	USWIH	113 (0.5)	16.1	300
46	Eagle Creek	PREAG	185 (0.8)	29.8	545
47		PRMAI	908 (3.7)	195.1	3057
48		USBUR	704 (2.8)	119.7	2524
49		WILMT	334 (1.4)	91.7	454
50		WILIT	352 (1.4)	82.5	634
51		WIUMA	390 (1.6)	79.8	717
MPG:	Payette/Boise		5146 (20.8)	2054.3	30023
52	Big/Little Willow Creeks	PAWIL	222 (0.9)	67.0	358
53	Squaw Creek	PASQU	387 (1.6)	78.4	634
54	South Fork Payette	PASFP	921 (3.7)	142.6	2025
55	North Fork Payette	PANFP	594 (2.4)	217.5	1076
59	Boise	USBOI	2692 (10.9)	479.6	5420
MPG	Malheur		3022 (12.2)	534.6	10255
56		MRLMT	1054 (4.3)	154.9	3651
57	North Fork Malheur	MRNFM	751 (3.0)	130.0	2663
58		MRUMA	1217 (4.9)	249.7	3941
		MIXOMA	1217 (4.3)	243.1	0041
MPG	Owyhee		7071 (28.6)	874.2	22393
60		ORLMT	3133 (12.7)	351.1	11179
61		ORLIT	1376 (5.6)	146.1	5107
62	· · · · · · · · · · · · · · · · · · ·	ORSFO	1179 (4.8)	197.7	4190
63		ORUMA	1383 (5.6)	179.2	1918
MPG:	Upper Snake (Snake tribs to Rock Cr.)		7273 (29.4)	866.2	11007
64	Canyon Creek	USCAN	3156 (12.8)	358.6	6086
65	Lower Bruneau	BRLMT	976 (3.9)	108.2	1032
66		BRUMA	1189 (4.8)	82.9	1681
67		USSAF	1610 (6.5)	269.3	1826
68		USROC	342 (1.4)	47.2	382

				Stream kild	ometers
ID	Population Name	Label	Basin Area (1000 acres/1000 km2)	Wtd. Km	Total
IC Spring Chinook ESU					
MPG:	Wenatchee-Methow		5311 (21.5)	746.2	1460
1	Wenatchee River	UCWEN	850 (3.4)	232.5	242
2	Entiat River	UCENT	268 (1.1)	47.1	83
3	Methow River	UCMET	1167 (4.7)	176.5	344
4	Okanogan River	UCOKA	3027 (12.2)	290.1	790
MPG:	Kettle/Colville		4185 (16.9)	334.5	1117
5	Sanpoil River	ACSAN	621 (2.5)	93.6	155
6	Kettle/Colville	ACKET	1100 (4.5)	112.7	265
7	Kootenay River	ACKOO	2464 (10.0)	128.2	697
MPG:	Spokane		1698 (6.9)	409.1	446
8	Spokane River	SPMAI	1256 (5.1)	281.2	321
9	Hangman Creek	SPHAN	443 (1.8)	127.9	124
. Snake River	Fall Chinook				
ID	Population Name	Stream Km			
MPG:	SR Fall Chinook TOTAL	1432.5			
1	Lower Mainstem (Extant)	819.7	mouth of Snake, + other accessible tributaries		
2		353	Hell's Canyon to Swan Falls		
	Salmon Falls		Swan Falls to Shoshone Falls		

Sockeye				
ID	Population Name	Label	Lake Basin Area (acres/km2)	Lake Area (acres/km2)
Wallowa Lake Grande Ronde drainage			32399 (131.1)	1503 (6.1)
1	Wallowa Lake		32399 (131.1)	1503 (6.1)
Warm Lake South Fork Salmon drainage			5832 (23.6)	412 (1.7)
2	Warm Lake		5832 (23.6)	412 (1.7)
Snake River ESU			66605 (269.5)	3223 (13)
3	Stanley Lake		9713 (39.3)	176 (0.7)
4	Little Redfish Lake		1090 (4.4)	64 (0.3)
5	Redfish Lake		17413 (70.5)	1512 (6.1)
6	Hell Roaring Lake		5117 (20.7)	60 (0.2)
7	Yellowbelly Lake		7535 (30.5)	195 (0.8)
8	Petit Lake		6826 (27.6)	391 (1.6)
9	Alturas Lake		18911 (76.5)	825 (3.3)
Payette Lakes Payette River drainage			158689 (636.8)	6728 (27.2)
10	Payette Lake		92511 (374.4)	4987 (20.2)
11	Upper Payette Lake		27082 (109.6)	302 (1.2)
12	Little Payette Lake		39096 (152.8)	1439 (5.8)

 Table 3. Sockeye salmon (O. nerka) populations and size statistics within the interior Columbia basin.